Focal cerebral ischemia and mitochondrial dysfunction in the TNFα-transgenic rat.

نویسندگان

  • Jignesh D Pandya
  • Patrick G Sullivan
  • L Creed Pettigrew
چکیده

Post-ischemic neurodegeneration may be accelerated by a cytokine-receptor mediated apoptotic pathway, as shown in a transgenic rat overexpressing tumor necrosis factor-alpha (TNFα) in brain. To further investigate the mechanism of ischemic cellular injury in this animal, we tested the hypothesis that increased synthesis of TNFα augments neuronal death by promoting mitochondrial dysfunction, calcium dysregulation, and oxidative stress. Adult male TNFα-transgenic (TNFα-Tg) and non-transgenic (non-Tg) littermates underwent reversible middle cerebral artery occlusion (MCAO) for 1 hour followed by 1 hour of reperfusion. Cortical mitochondria were isolated from injured (ipsilateral) and uninjured (contralateral) hemispheres of ischemic rats or from pooled hemispheres of control animals. ATP synthesis was attenuated in non-ischemic TNFα-Tg rats, demonstrated by reduction of state III and respiratory control ratio, increased production of reactive oxygen species, and earlier formation of the calcium-induced membrane permeability transition pore. After MCAO, mitochondrial dysfunction was augmented more significantly in ischemic TNFα-Tg brain mitochondria than in non-Tg rats. These results show that mitochondrial dysfunction may be caused by increased brain levels of TNFα without physiological stress but will be exacerbated after MCAO. We conclude that ischemic stress and synthesis of inflammatory cytokines synergistically augment mitochondrial dysfunction to promote neuronal death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia

Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...

متن کامل

Evaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat

Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...

متن کامل

Pre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat

Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...

متن کامل

Comparison effect of pentobarbital sodium with chloral hydrate anesthesia on post-ischemic damage in an experimental model of focal cerebral ischemia

Introduction: Anesthetic agents, blood pressure, arterial pH and blood gases have found to influence on the pathophysiology of experimental stroke. Despite, there are very few comparative studies about effects of anesthetic agents in animal model of cerebral ischemia. Therefore, in this study, we investigated the effects of chloral hydrate and pentobarbital anesthesia, as comparative study, on...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research

دوره 1384  شماره 

صفحات  -

تاریخ انتشار 2011